Thirty Nine Light Years: Part Three

More transmissions come in from the TRAPPIST-1 system. Three worlds stand out from this family of seven rocky worlds, all huddled around a dim little red dwarf star.

There’s water here. Lots of it. Spectroscopic analysis first spotted it decades ago, but recent arrivals to the system are diving into new frontiers.

Back in our neck of the woods we’ve sent various missions beneath the ice. There’s a lot of ice covering a lot of water. Commercial operations have popped up all over the system using all of this water to make fuel. Europa Clippertook the first real good look at this little moon. Several fly throughs of Europan geysers showed clues the moon may harbour life.

TRAPPIST 1e has a single frozen ice cap, perched over the planet’s southern pole. The above image was taken by an underwater drone: one of dozens dispatched across the planet’s two small oceans. This expanse of ice is tiny, comparing in area to the north pole on Mars, but it’s rich with organics.

How rich?

A native moved across the drones field of view, investigating for a few moments and then darting back into the darkness. Attempting to locate the creature led the drone down into further unexplored depths.

A single close up image has been beamed back, digitised and speeding across 39 light years to astrobiologists on Earth. Not even Europa has yielded anything this concrete yet.

The presence of what appears to be a single eye denotes a certain level of biological sophistication. This denotes a long lineage of life on this distant world. TRAPPIST-1, like many other red dwarf stars is far older than our own sun, at between eight and ten billion years. This lifeform may have had a long time to evolve. Indeed, life may have appeared and disappeared more than once on this world, given such time frames.

The planet’s land (about sixty percent of it’s surface) is blanketed by vast regions of photosynthetic organisms which appear to use a pigment similar to retinal to pump oxygen into the atmosphere. This aerial view shows a plain of red grass-like organisms at the shore of a shallow inland lake.

Primitive photosynthetic life covers much of the planet, producing an oxygen rich atmosphere.

A thin veil of dust embraces the planet, forming a wispy but noticeable ring system. This material has already been detected spectroscopically, and researchers have been able to surmise some important data. TRAPPIST-1e was once an ocean world. Tentative detection of carbon, oxygen and calcium in the planet’s ring has been confirmed in new data beamed back from the mission’s orbital component. Such a combination of elements strongly suggests the presence (at some point in the planet’s history) of limestone. Limestone has been touted as a bioindicator, and it’s possible presence has long been suggested around other stars. Why would the presence of limestone be a big deal?

This bizarre spiral shaped volcano is a window directly into the deep history of not only TRAPPIST-1e, but the entire system.

Because here on earth, limestone is usually a biological byproduct. On Trappist-1e limestone in orbit indicates that life here once produced shells or skeletons of calcium carbonate. Perhaps the single creature spotted beneath the southern ice cap could teach us more…

What else waits in the frozen darkness?

All images ©Ben Roberts

Advertisements

2 thoughts on “Thirty Nine Light Years: Part Three”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s