Category Archives: emergence

Thirty Nine Light Years: Part Three

More transmissions come in from the TRAPPIST-1 system. Three worlds stand out from this family of seven rocky worlds, all huddled around a dim little red dwarf star.

There’s water here. Lots of it. Spectroscopic analysis first spotted it decades ago, but recent arrivals to the system are diving into new frontiers.

Back in our neck of the woods we’ve sent various missions beneath the ice. There’s a lot of ice covering a lot of water. Commercial operations have popped up all over the system using all of this water to make fuel. Europa Clippertook the first real good look at this little moon. Several fly throughs of Europan geysers showed clues the moon may harbour life.

TRAPPIST 1e has a single frozen ice cap, perched over the planet’s southern pole. The above image was taken by an underwater drone: one of dozens dispatched across the planet’s two small oceans. This expanse of ice is tiny, comparing in area to the north pole on Mars, but it’s rich with organics.

How rich?

A native moved across the drones field of view, investigating for a few moments and then darting back into the darkness. Attempting to locate the creature led the drone down into further unexplored depths.

A single close up image has been beamed back, digitised and speeding across 39 light years to astrobiologists on Earth. Not even Europa has yielded anything this concrete yet.

The presence of what appears to be a single eye denotes a certain level of biological sophistication. This denotes a long lineage of life on this distant world. TRAPPIST-1, like many other red dwarf stars is far older than our own sun, at between eight and ten billion years. This lifeform may have had a long time to evolve. Indeed, life may have appeared and disappeared more than once on this world, given such time frames.

The planet’s land (about sixty percent of it’s surface) is blanketed by vast regions of photosynthetic organisms which appear to use a pigment similar to retinal to pump oxygen into the atmosphere. This aerial view shows a plain of red grass-like organisms at the shore of a shallow inland lake.

Primitive photosynthetic life covers much of the planet, producing an oxygen rich atmosphere.

A thin veil of dust embraces the planet, forming a wispy but noticeable ring system. This material has already been detected spectroscopically, and researchers have been able to surmise some important data. TRAPPIST-1e was once an ocean world. Tentative detection of carbon, oxygen and calcium in the planet’s ring has been confirmed in new data beamed back from the mission’s orbital component. Such a combination of elements strongly suggests the presence (at some point in the planet’s history) of limestone. Limestone has been touted as a bioindicator, and it’s possible presence has long been suggested around other stars. Why would the presence of limestone be a big deal?

This bizarre spiral shaped volcano is a window directly into the deep history of not only TRAPPIST-1e, but the entire system.

Because here on earth, limestone is usually a biological byproduct. On Trappist-1e limestone in orbit indicates that life here once produced shells or skeletons of calcium carbonate. Perhaps the single creature spotted beneath the southern ice cap could teach us more…

What else waits in the frozen darkness?

All images ©Ben Roberts


Beyond the Pale Blue Dot

In all the gin joints, in all the world…

An old movie line, but it speaks a truth: life is miraculous to the point of being impossible. We search for it. To be fair, we’ve really only begun looking seriously in the last thirty years or so. The discovery of the first confirmed exoplanet in 1995 propelled us into the heavens, and we began to seriously believe we may just find life out there. Why not? That isn’t a scientific response, but life is incredibly improbable. The amount of unbelievable coincidences that enabled life to appear on our blue green marble almost beggars belief. Everything had to be just right, or life just never would have happened. Just like the proverbial bowl of porridge, which actually leads to the topic of this post. A certain famous little girl of fairy tale fame lent her name to the region around a star at which liquid water can exist in a stable form on the surface. More precisely, this region, or “Goldilocks Zone” is the distance from a star: the sweet spot where liquid water exists. To be more precise again, the Goldilocks zone is a function of stellar luminosity and output. The more energetic a star, the further out it’s Goldilocks or habitable zone is. It’s a fairly linear progression: the hotter the star, the more distant it’s habitable zone. Image: NASA/JPL Extremely simplistic, but that’s us in a nutshell. We happen to be just the right distance from our sun. Because life has only been found here (as far as we’re aware), we naturally think that life will tend to favour “earthlike” conditions somewhere else. That probably makes some sense. However, does all life in the universe necessarily exist on a rocky, watery world that essentially mirrors our own? It doesn’t have to be the case. Much recent thinking has been directed towards redefining the habitable zone. Our solar system is one of countless billions estimated to exist in our galaxy alone. As researchers discover more exo-solar systems seemingly every day it’s becoming apparent that perhaps our particular corner of the block is actually quite unusual. For astrobiology to have any relevance at all it’s important to think outside the square. For that reason we take a look at the habitable zone as we know it and stretch it’s limits.

The Local.

In our solar system we see a complex family of objects, all held together loosely by gravity. Many of these planets are suspected to possess water. Lots of it. In fact it’s believed by many researchers that the amount of water in the solar system not situated on earth is quite large. Our blue green marble is actually fairly arid compared to many other worlds in our solar system. The Galilean moon Europa is smaller than earth’s moon, but may hide two to three times more water than is found here! Earth is surprisingly dry compared to tiny worlds such as Europa, with the blue orbs representing an approximate comparison of each world’s respective water content. Europa is one of a small group of worlds in the solar system that have piqued the interest of astrobiologists over the years, as they are believed to possess certain sets of conditions and environments that could be conducive to the presence of life. Not just habitability (as was possibly the case with our Moon), but abiogenesis. Life arising from whatever hidden firmament lies within their icy depths. The reason these worlds give astrobiologists hope is that (quite naturally) exo-solar systems come in all shapes, sizes and flavours. Moons like Europa, Enceladus, or even now quite dead worlds such as Venus and Mars throw us tantalising glimmers of hope that Earth based life is not alone in the universe. These worlds (and others we discover) often possess sets of conditions assumed to be completely hostile to life: as we know it. However, even life as we know it has shown us that it can really go off script sometimes. Whole new classes of extremophilic organisms have been discovered, and are still being uncovered in some really nasty corners of the world which show one thing: life’s ability to shuffle pieces around on the evolutionary chessboard has enabled it to live almost anywhere: in space, nuclear reactors, and the earth’s mantle. Bacteria have recently been discovered in Antarctica which literally use hydrogen as a food source! These organisms suggest that the traditional concept of a habitable zone: the right amount of heat, light and atmospheric pressure as we observe on earth need not necessarily apply to alien planets.

Tidally locked exoplanets

These are worlds which orbit their star(s) with one side permanently facing inward. The obvious ramifications of this: the side facing the star obviously has a much greater actinic flux than the planets night side. Translation: it is likely a scorched wasteland, where temperatures are oven-like. On the dark side we expect to find extremes of temperature at the opposite end of the scale. This side would be frozen and permanently dark. Overall, the planet doesn’t seem to hold much hope for life. It is believed that a good percentage of confirmed explanets are locked into tight orbits around their stars. Often these worlds take a few days (or less) to complete an orbit, and they are most likely tidally locked as a result. Such worlds are known as Ultra Short Period (USP)  planets. But all hope is not lost. The discovery of water ice in permanently shadowed craters on worlds as hostile as mercury and the moon leads many researchers to believe similar regions could exist on tidally locked exoplanets. Such water filled craters lie within the Terminator, the boundary between a planets day and night side. On a larger object such as an exoplanet, small strips of habitability could exist, situated in literally a permanent twilight zone. Twilight Zones of habitability could be a surprising spot for life to appear… In such a situation, the habitable zone as we define it would not be as dependant on distance from a star.

No Habitable Zone?

The recent discovery of two rogue planets lends itself to another interesting scenario. These rogue worlds are planets which aren’t gravitationally bound to a solar system. They are believed to be quite common. Current estimates have the complement of wandering worlds in the milky way galaxy at approximately two billion. How could such exotic locations possibly host life? Because geothermal or tidal heating could provide conditions in which life could possibly eke out a niche. Tidal heating is a mechanism for internal heating which has been observed in several frozen, distant worlds in our own solar system. Europa (mentioned above) and Enceladus likely possess subsurface oceans of liquid briny water. The heating for this comes from the gravitational stresses caused by interactions with nearby worlds. In the case of Europa and Enceladus their elliptical orbits around Jupiter and Saturn respectively cause an ebb and flow of tidal flexing in their rocky cores. Such frictional heating may even give rise to fissures and hydrothermal vents providing possible locales for biogenesis, as may have been the case here on earth. These frozen worlds appear lifeless, but appearances could be deceiving. Whilst far beyond the habitable zone of this solar system, the presence of life on either world would lead to further redefinition of habitable zones. Exoplanets are believed to number in the trillions in this galaxy and the recent discovery of the first known exomoon suggests that moons could be even more numerous. After all, in our solar system moons and natural satellites outnumber the planets by ten to one. Habitability on any of these worlds opens up the options for researchers observing distant solar systems for signs of life.

To the Weird..

Last but definitely not least. A benchmark of habitability as we define it for earth based life is that, overall, the environment should be fairly benign in order for life to have a chance. Earth itself only became habitable after billions of years of incredible geological upheaval and intense bombardment from outer space. Not only that, the presence of a thick atmosphere afforded protection from cosmic rays pumped out by a young sun. A class of exoplanets known as super earthsmay be able to support life despite often being in orbit around extremely energetic stars such as red dwarfs. These stars are tiny, often having only ten percent of the mass of our sun, but they are nasty. Frequently they have been seen producing extreme solar flare activity. This image shows a solar flare being generated by the red dwarf star DG Canum Vernaticorum (DG CVn). To put it in perspective the most powerful solar flare observed on our sun was rated X45 on a standard scale used to gauge glare events. In comparison DG CVn was rated X100,000: 10,000 times more powerful! At its peak the DG CVn flare reached temperatures 12 times hotter than the core of the sun! NASAs SWIFT observed this event over 11 days, recording the most powerful flare ever recorded. Image: NASA/SWIFT It stands to reason that any nearby planets would be baked into oblivion by the levels of energy being produced during such events. But larger rocky worlds such as super earths could provide a slim chance of life. Super earths are rocky worlds ranging in size from three to five times larger than Earth. Their mantle and outer layers could act as a shield against radiation, enabling any lifeforms present to carry on in subsurface biospheres, akin to recently discovered microbial biospheres deep in the earth’s crust. Lifeless surfaces could hide thriving ecosystems throughout the galaxy, or even beyond. Even neutron stars could harbour life bearing worlds if conditions are just right. These stellar objects don’t seem like an ideal location for life, but again a suitably large and dense world could provide safe harbour against lethal X-rays and other electromagnetic nastiness. Small worlds could be destroyed if they strayed too close, but if a super earth lay at a safe distance, who knows?

A Final Thought….

In this overview it’s been shown that life can theoretically exist outside the traditional confines imposed by earth based habitability criteria. However, I’ve only looked at planet based life… Who knows what else is out there? That’s a whole new type of thinking. Thanks for reading! I have a new video coming, which will be based upon this blog post. In the meantime, here are some speculations on a habitable moon in the distant past. P. S.. I have recently set up an online store, featuring my designs on a range of products, any of which would make fantastic and unique gifts! Take a look: All images © AstroAF Designs unless specified in image caption.

#Emergence in Action

The universe is a truly incredible thing. It is an endlessly cycling chaotic simulacra, churning out endless iterations of itself. The best part about being immersed in such wonder? No one needs to travel to the ends of the Universe to see this. At roughly 93 billion light years across there’s plenty to see. But the thing is, the universe is self assembling!

Yes, self assembling. What does this mean?

Exactly what it says. Nature is chock full of patterns. It’s said that nature abhors a vacuum. Perhaps it’s more accurate to say that nature abhors disorder. Patterns arise naturally from the firmament of whatever lies beneath the universe every single second every where at once all across the universe. In all of that vastness messes and disorder arise, but order always eventually spontaneously emerges.

Or at least it seems that way.

Life is a special example of emergence in action. A rather special example. It’s the most incredible phenomenon in all of existence. It’s right next to me as I write:

This is a collective of eukaryotic organisms. They all share the same genome: a special set of instructions which has emerged over evolutionary time. This set of instructions co-opts other seemingly random but very precisely designed molecules to pretty much do nothing but make more copies of itself ad infinitum. This collective of cells has organised itself into specialised structures that make the business of being a collective a little bit easier for all involved.

Now, replication of these instructions will eventually become riddled with flaws, as a process called senescence begins to emerge from this collective’s previously youthful state. Time will march on and eventually another equilibrium will emerge called death.

It doesn’t even end there. All of the atoms and compounds within this collective (from now on we’ll call this collective “Jasper”) will cycle through soil, clouds, other organisms, stars, molecular clouds, other planets and galaxies. Eventually they’ll come to rest at the end of time along with everything else. It’s a heck of a story. Really.

And all of that is self organising. Structures and patterns arise spontaneously from the laws of nature. Structures such as rivers and streams are no different to other familiar branching structures such as circulatory systems. Methane based river systems on frozen Titan resemble precisely the branching network of blood vessels that winds through your body like…..well, a river system. And it all creates itself!

2017-03-06 16.28.34
Naturally arising branching patterns on earth.

This spontaneous self organisation is ubiquitous in nature. Life , and especially multicellular life, has borrowed this proclivity for patterns, recreating those which seem conducive to biological processes functioning well.

Is this how multicellularity got a leg up?

Consider this example. Physarum polycephalum is the scientific name for a rather interesting species of plasmodial slime mold. Now, its name is a sign of things to come, meaning “many-headed slime”.

Plasmodial slime molds; not quite colonial, not quite multicellular. Image: Wikipedia

P. polycephalum breaks several tenets of what we would call common sense. Essentially, it is a single gigantic cell, consisting of thousands or millions of individual cells which have joined together for common interest. Unlike creatures like you and me, however, these cells aren’t compartmentalized like our own. In us, each cell is partitioned from its brethren by walls and membranes. The innards, including the nuclei are tucked away safe and sound. It’s truly a neighbourhood as we would understand it. Within the slime mold it’s like the sixties never died. It’s an orgy in there. All of the individual nuclei all slosh around inside this plasmodial common area. Creatures bearing this property are called coenocytic.

So. The slime mold has this kind of generic look about it, doesn’t it?

All of these structures emerge spontaneously, coded for by some as yet unknown aspect of spatial and quantum topography. I don’t know what this is, or how to elucidate it, but I know it’s there.

Life has somehow managed to encode these structures. Just like Jasper in the first image, these structures have evolved over geological time to work together, creating assemblages from which something emerges that is greater than the sum of its parts.

Could the first attempts at multicellularity have gotten a leg up? Did the laws of nature lay the groundwork for biological structures shared by the vast majority of multicellular organisms today? Consider this scenario.

Earth, several billion years before the present day. You’re drifting above a hellish landscape, in a little temporal bubble, that allows you to observe and record data but not interact with the landscape in any way. That could be disastrous. How so? Just imagine accidentally stepping on L.U.C.A; the Last Universal Common Ancestor of all life. Let your imagination do the rest. So you’re drifting along, observing, and you see something.

The earth at this time is hot. Islands of freshly minted land protrude above the semi-molten surface of a world still cooling down. You see chunks of the planet high above you, settling into a tenuous orbit. Only recently something the size of Pluto crashed into baby earth, shattering much of its outer skin and sending it into high orbit. All of those chunks you see in the sky will one day become the Moon. The collision wiped the surface clean like an Etch-A-Sketch, and so as a result baby earth is reforming again. Pockets of land like this one harbour water and other organic muck delivered by comets; the Universe’s version of Fed-Ex. Not to mention the stranger that caused all this damage in the first place.

Space plays rough. Earth’s surface, wiped away in a catastrophic collision, provided the raw materials for its moon. Image: NASA/JPL

The view is impressive. Just imagine every vision or rendition of Hell you’ve ever seen and apply reality to it. It’s pretty cool. But something else huge is happening as well. Life is forming in the midst of this apocalypse. Your time machine hovers over the most momentous event in the history of the universe…

Whatever this tiny thing is, drifting about in warm eddies and swirls in that hot little pond, it’s the first. It may not live to see another day, or it may eventually give rise to things like you. You would love to examine it in more detail, but you ask yourself. How did this singular piece of organic machinery manage to figure out that one day forming collectives would be a good idea? Your time machine bubble thing seems to know what you’re thinking. It is only fictional after all, and the writer decides to jump forward a billion years or so….

Something large and dark slowly glides past you in the brightly lit upper layer of a sea that completely covers over three-quarters of the planet. The thing pushes you aside as a tremendous tail fin propels it down into dark depths. It’s some kind of fish. A big fish. The armour plating on its head gives it an appearance reminiscent of a tank. If Thunderbird 2 and the Batmobile (Christian Bale’s batman of course) had a baby, it would look something like this: Dunkleosteus. Your time bubble wobbles alarmingly as the behemoth sends powerful compression waves through the water. You know this is a fictional scenario, but you don’t care. You’ve gone too far forward anyway….

Primeval earth, with a toxic atmosphere, much closer moon and primitive colonial life, in the form of stromatolites (right foreground). Image: NASA/JPL

A haze wafts across a landscape dominated by volcanic ash and a truly huge moon. Waves crash against a dark craggy shoreline. The time bubble lets you observe, but not interact, right? You can observe with all your senses. This place stinks. The shoreline is matted with a thick film of bacteria and gunk. Waves crash against the mat, breaking it up, and dispersing it further landward. You’re guessing with the moon so close tides must be insane here. This whole area is sub-littoral. Anything that can hold on here has to be tough. The rocks all give off steam. The sun isn’t as hot now as it is where you come from, but seams of volcanic activity are evident out in the water. Pillow like ridges of freshly solidified lava stretch up the shore, still not quite cool. Bacteria, or these Archean versions of them carpet some of the rocks. It’s here that you see something big. Almost as big as life appearing in the first place. Channels and rivulets run through some of the mats. Skins have formed and as water has reduced within the mats, structures have appeared. These mats have been given a push towards colonialism by the blind forces of nature. In these early more experimental times, genetic information and it’s transfer is a lot more promiscuous. A lot less Darwinian and a little more Lamarckian. These bacteria with their scrambled DNA and transfer will find this way of doing things a little easier, and will adopt it. Quickly.

Does this scenario make any sense? It does, but it had to have some basis in fact. I saw the principles in action, and they are as follows: an organic matrix, containing all manner of constituents useful to life is forced into biologically useful patterns and structures by some kind of energetic input. Where did I see this happen, or at least some analogue of it?

My creature lives! Meet Soupenstein.

Meet Plasmodium botanicus, or plant muck. Otherwise known as puree vegetable soup. It does bear a striking resemblance to P. polycephalum, doesn’t it? This little monstrosity was created accidentally in the lab. Or should I say kitchen?

20170728_133413 It was busy. I was moving at a million miles an hour, when I spilt soup on the grill plate next to me. This odd structure was the quick result. Branching patterns and channels formed within seconds, and I was instantly taken by its similarity to a slime mold. It was this random splash that was the inspiration for this post. Now, this post is only a speculative “what if?” with some cheap time travel thrown in, but could the earliest multicellular life, or collective modes of existence have been given some kind of initial leg up by similar incidents or circumstances? There are parallels between my imagined “slime on a rock” and the soup accident above. Let’s call the soup an extracellular matrix. It is a composite substance, containing all manner of organic compounds, plus a few impurities (probably. What doesn’t?). Energy in the form of heat is applied to the ECM as it comes into contact with a flat hot surface. Water in the ECM reduces, leaving behind a concentration of material, which forms channels and branches in accordance with the laws of nature. Bacteria within this newly formed arrangement suddenly find life a little bit easier.

What of other mixes of organic and inorganic compounds? Could life have resulted from a random splash like this? Did multicellular life arise when the cosmic cook was a little busy and not being careful? It would be interesting to perform a series of experiments. Why not use foodstuffs such as soup? Would different recipes lead to different structures? Would other energy sources, or electricity, lead to new outcomes? Who knows? That’s the point of experimenting!

I’d be interested to hear what others have to say on this. Thanks for reading.



References and Further Reading:


Thanks for reading this far! Could readers please do me a favour? I have a YouTube channel, and I would like feedback on it. If people could watch a couple of videos and give CONSTRUCTIVE criticism. What’s good? What’s not? Am I boring? Do I mumble etc? All feedback is welcome and if you can leave comments either here, on my twitter, Facebook or YouTube channel that would be awesome. I’ll make you famous. Or something.

#Yggdrassil: The World Within a Tree

“We live in a Universe that seems to be unsure of its rules sometimes. Is everything preordained, folded and tucked into the very tiny recesses of whatever quantum realm underpins our own world? Is everything an emergent property, constantly cycled and coded in real-time? Writers and thinkers have pondered this question and its countless variations since thought began. I’m not arrogant to declare I have the answers, and honestly, at this point in time could anyone? 

Whatever viewpoint you have on the universe and how it all stacks up, there are some things no body can deny. Everything works the way it works, no matter what explanation you put forward for it.”

Staring at traffic gets me in a pensive mood sometimes. It makes me wonder (as an aside) how much thinking is done at windows, watching the world rush by? Right now I’m thinking about several hours just spent at some local wetlands. Just near my home, they have been virtually rebuilt by local councils over the last fifteen years or so, in a bid to clean up the environment a little bit. It isn’t really a token gesture. The wetlands have been a beacon of success amid the constant flood of tales of environmental woe. I visit them all the time when I get time off work, and love nothing more than wandering for hours at a time, taking photos of insects and whatever else takes my fancy.

You see, I really like science. I even studied it, slogging through five years of university, so I could get a nice big certificate to put on my wall. It was fun, but I’ve realised that for me science is all about wandering around in lonely places and just paying attention to things that others sometimes don’t see. It’s all about where you feel at home, and I’ve always felt at home in my imagination.

Today’s walk took me through the Paddocks Wetlands. They’re an area set aside by local government for environmental remediation. They constitute a fairly large chunk of land, set behind factories and commercial precincts.

The open space didn’t interest me today. I was armed with a bunch of cameras and a cheap little macro lens for my smart phone. Today, I went bug hunting. I went yesterday as well, just a boy and his smartphone.

Today’s trek through the wilderness was initially not panning out. With some pretty miserable weather, insects seemed to be sleeping in that day. I was getting a little bored. I was streaming my walk on Periscope, and getting a little distracted, clowning around for the viewers.

Then, a tree happened.

Trees hold a powerful place in world mythology. The mighty Ents of J.R.R. Tolkien’s Middle Earth are derived from ancient European myth. Trees are sacred in many cultures. This probably found its greatest expression in Norse mythology, with the World Tree Yggdrasil.

Rooted in Eurasian mythology, Yggdrasil continues its hold on modern imaginations.

According to Norse legend, Yggdrasil was a mighty Ash (sometimes Oak) tree, whose branches extended beyond the heavens into the nine realms of existence. It’s roots extended far below, into the homes of Gods and demons. I personally have always loved this tale. It’s always given trees a certain mystique. When I was younger I used to believe they could think and feel just as we do, and wondered what secrets they kept to themselves…

In a way this assumption wasn’t far off. At the paddocks wetlands today I was able to focus on a single tree, finding a host of life and drama within.

This quiet unassuming tree became my main focus for the day.

This wasn’t just some boring old gum tree. On walking past it, I immediately noticed something I don’t see very often:

This praying mantis, about 4 cm long was lurking quietly among some drooping Eucalyptus branches.

I was truly excited to find this little beastie. It was in the midst of eating the still twitching halves of a European wasp. It’s not every day we get to see nature at its violent best, and my camera was at the ready. The mantis was on to me, I’ll give it that. About the only important thing to heed when trying to photograph or film insects is that they are 1: extremely alert, and 2: extremely timid as a rule. They’ve been around for a very long time, and they’ve been on everyone’s menu for a long time. They’ve become very good at evading big clumsy beasts like myself. If you are, however, very quiet and move really slowly, you can get decent shots.

Or at least Twitter worthy shots.

The tree was home to so many. Dramas were unfolding before my eyes, and that was what was so great! From blood thirsty evisceration amid large gum leaves hanging like drapes to the aftermath of pitched battles:

Sometimes, no one wins.

Yggdrasil continued to unfold before me. Fire ants were foraging in the tree branches, coming down to investigate the praying mantis. The mantis actually tossed the wasp away, on realising I wasn’t going to leave it alone! That, and the inquisitive ants coming down to assess the situation and the mantis went into lock down, assuming it’s well-known posture of supplication. As I’ve said, insects are incredible survivors. On turning away for a few moments to further explore the tree the mantis was gone forever, melting into the greens and browns of the branches drooping down to the ground.

Note: My identification of these ants may be completely wrong. Feel free to correct me. 

The ants only numbered in the dozens.  They were like a scouting party, sent from their command centre to gauge the lay of the land before invasion day. One explorer to another, I watched them go about their business.


When going on these kinds of walks,  I have found that you can’t go out intending to find something. Most times the only times I find things worth capturing on film is when some random glance leads me to a new discovery. Even knowing where to look is not enough sometimes. Insects are extremely elusive. Their size and alertness has kept them alive for hundreds of millions of years. Like Tolkien’s Hobbits, it seems that insects and their arthropod cousins will only be seen by us big folk when they want to. This is when we go out using only our eyes to look.

One tree was full of dramas and epic struggle. A fight for survival, a loser vanquished by a stronger foe and rent asunder like a bloody trophy. The first tendrils of conquest, seeking new worlds, coming into contact with the natives. These first contacts not going so well for some; even for combatants from both sides. Perhaps there’s a lesson in that for those who care to see it.

For these tiny creatures, this eucalyptus tree was their world. Like the Norse stories, the tree was their Yggdrasil, their entire cosmology. Branches swept up out of sight into the heavens, where only the foolhardy would ever travel, risking swooping birds. The tree’s roots grasped deep, clenching around the foundations of their universe. Some branches were reaching out, entwined with those from other universes, where brave travellers would cross over, meeting inhabitants of the neighbouring universes. Unknown to them all, they were all being watched by higher powers, hovering over them.

Or, were they unaware?

Unthinking Coordination in “Simple” Lifeforms

It’s another picture perfect day here in Adelaide,  South Australia. Despite the fact that Autumn has been with us a few weeks now I’m getting uncomfortably hot. I’m lying on my stomach on a small marina, my face hanging over the edge and inches from the water.

As is the (annoying) habit of our cat I’ve simply dropped down and parked myself right in the walkway. Why?

Jellyfish. Lots of them.

Getting out and looking for little beasties to photograph is a passion of mine. If I’ve managed to randomly bump into some caterpillar or spider I’ve never seen before,  then I pretty much have to clear my diary. I am not a professional photographer by any stretch, but it’s getting out there and seeing these things that’s important. Whilst walking along the wharves in Port Adelaide the sight of thousands upon thousands of jellyfish in the water has me reaching for my cameras, which are always in my car.

This swarm seems extremely out of place. I’ve already done a live stream on Periscope showing the good folks of Internet land this odd phenomenon, and now it’s time to really try and do it some justice.

A Jelly Family Tree

First off, these graceful creatures are Moon Jellies. They are extremely common in Australian waters. I have observed them now in the Port River in St Vincent’s Gulf, South Australia and in Darling Harbour, Sydney, New South Wales.  Moon jellies are a favourite food for many turtle species. Being easy to both eat and catch I could understand why. I was actually asked this very question during  my live stream.  One thing that heartens me during these live streams (and that I notice while watching others) is that people really like animals. In fact, wildlife seems to bring people together in a very positive way.

There’s some kind of take home message in this, don’t you think?

Moon Jelly is the common name for Aurelia aurita,  a species found globally. Jellyfish, along with sea pens, corals, anemones and hydra belong to the animal phylum Cnidaria. Approximately 10000 animal species belong in this group, and all are exclusively aquatic. Cnidaria are an extremely ancient group, with jellyfish fossils up to 500 million years old being discovered. Fossils believed to represent the Cnidarian crown group predate the Cambrian by around 200 million years. Cnidarians represent the oldest multi-organ animals known.

This fossilised jellyfish, found in Cambrian strata in Utah, is diagnostic of modern jellyfish spp. Image: PLOSone. 

The moon jellies, like all scyphozoans;  or true jellyfish, posess cnidocytes. These are specialised barb like cells which on coming into contact with prey (or anything for that matter) penetrate and inject venom into the recipient.

Micrograph of cnidocytes. Image:

These particular jellies are almost harmless to humans. In fact, it’s said that the only way to feel a sting from a moon jelly is to kiss one.

Not enticing.

Australia is however home to several species of jellyfish which are far more dangerous. We do posess our share of dangerous animals. Some of the most lethal venom on Earth can be found in Australian waters. From the tiny Irukandji jellyfish;

Big things come in small packages. The Irukandji jellyfish delivers one of the most lethal venoms on the planet.

To the Box jellyfish:

Just when you thought it was safe….cue menacing music..

The moon jellies gathered here in the Port River are weak swimmers at best and so are often found collected in estuaries and inlets in this way, caught by the tide. Observing these jellies showed them seemingly moving as one: the group seemed to surge in one direction, oscillating back and forth in a manner reminiscent of group behaviours: much as flocks of birds appear to move about as one. Empirical observation would seem to bolster this. The bell structure of most jellies seemed to point in the direction movement.

This is interesting. Jellyfish, along with other cnidarians, appear to have no (or at least very rudimentary) brains. They clearly have nothing we would recognise as a brain. Instead, their bodies are essentially a loosely interwoven collection of simple nerve networks, reacting and interacting with each other for the purposes of responding to stimuli.

This decentralisation of “administrative duties”, or biological anarchy is seen in some rather more advanced creatures. Octopuses are one example. It is now well known that octopuses are extremely intelligent, but these amazing animals are now thought to sit somewhere outside the traditional brain/body divide we have accepted as a basic paradigm of our own physiology.  Not only do octopuses have a brain, but their tentacles operate independently, acting with their own intelligence. Essentially the entire body of an octopus is it’s brain. Is this a feature of marine organisms and the result of marine existence?

While jellyfish could hardly be called intelligent, are we not giving them enough credit? Does living in an environment as featureless and homogenous as the ocean necessitate a particular brand of spatial intelligence and information processing?

Imagine a line representing a scale. This scale is that of intelligence: in particular the gradation from true brainlessness and pure instinct displayed by, say, bacteria to “higher” intelligence in which all memory, learning and response is coordinated by a complex central nervous system ( a brain. Think “human”).

On this line an octopus seems to sit somewhere beyond halfway. Able to perform complex tasks, and armed with a unique “whole body” intelligence the octopus is gaining a whole new respect.

The jellyfish appears to act wholly on pure instinct and autonomic response. I observe a swarm blindly clustering in a protected estuary and wonder. Decentralised nervous systems enable a different flavour of response to external stimuli. It speaks of a wholly different pathway by which intelligence could rise in the ocean. Terrestrial and marine environments could not be any more antithesis to each other. Land changes much more and over shorter periods of time than the sea. The land is a much harsher place in many ways. Organisms living on land have been forced over evolutionary time to undergo many more changes in order to survive: hard eggs, legs, and a much greater reliance on eyesight to name a few. Life in the ocean is vastly more stable. Does the existence of organisms such as horseshoe crabs, jellyfish, sponges and sharks, which have remained virtually unchanged for hundreds of millions of years give testament to this stability?

Where could a creature such as the jellyfish go, given time? The octopus, a simple mollusc, is an impressive example of a non human and quite alien intelligence. Do other forms of awareness and behaviour (that shown by jellyfish) constitute some new paradigm we haven’t recognised yet, and from which intelligence may someday emerge?

#Symbiosis: meeting at transitions

I’m standing on a very worn and not well maintained footpath overlooking a huge expanse of pungent sand. A mile or two out the ocean shivers and snaps in a strong midday breeze. It’s cool but the sun is putting up a fight. This place has that perfect combination of quiet, bottomless deep blue sky and loneliness. I could spend  a whole day in a place like this.

I’m here to explore a small part of the vast tracts of mangroves that crowd the coast of the St Vincent Gulf north of Adelaide. 

There are only a few places like this left in South Australia. Humanity has wrought it’s usual brand of havoc on local ecosystems, concreting and carparking the living heck out of everything in it’s path. These kinds of places are a refuge of all kinds. A refuge for wildlife and a refuge for those wanting to escape the cancerous sprawl that is humanity.

It always strikes me when I visit these kinds of places that there is a particular kind of peace here. A bizarre form of symbiosis exists between nature and the derelict fringes of civilisation  you find in these forgotten corners. To be sure, St Kilda is no wasteland: hundreds of people live out here. However, out here you see a kind of comfortable embrace between abandoned humanity and the natural world. Like tired frayed spiderwebs such old ruins hold on, degenerating somewhat to a previous natural state. 

Perhaps another term to describe this relaxed coexistence is attenuation. Out here, nature and abandoned places have become used to each other. An old shack, with it’s windows and doors long gone may be held up by nothing more tangible than the fact that gravity hasn’t really bothered with it yet. Like an old worn face these shacks sag and lean at unflattering angles, but the myriad creatures that make them their home don’t mind. 

I love finding these kinds of places, but I also respect them. They don’t belong to us anymore. They lie on some boundary which has emerged from the clash of two Orders; the human and natural worlds. We have removed ourselves so completely from nature that we forget our place in it. I watch these places fade away and see this symbiosis: a kind of neutral zone between humanity and the living world. 

These places are another kind of beast: a hybrid world, where old patterns overlay the new, and something new emerges. Even now we are beginning to see nature coming to terms with humanity in this way, as more and more species transplant themselves into our world. Birds are an example of organisms that are now thriving in the densest of human population centres. As we spread so relentlessly across the planet, do they really have any other choice?  It’s the oldest choice in nature: adapt or perish. 

These “edges”: places like the St Kilda mangroves and other regions that form transitions between humanity and wilderness will be where a true coexistence between us and Nature develops. This symbiosis could be crucial not only for our future but the future of life on this planet.