Planet Building: Possible?

astroarchaeology, astronomy, scicomm, science fiction, Science fun, solar system, Uncategorized

If you don’t want to read, then listen! I have put this post up on a podcast I’m doing, available on Anchor FM, as well as certain other outlets.

https://anchor.fm/astro-biological/embed/episodes/Planet-Building-e1ff39

If anyone has read “The Hitchhiker’s Guide to the Galaxy” quadrilogy they would have been struck by some of the big ideas hidden within Douglas Adams’ deadpan humour. One of the heavy concepts that stuck with me was the idea of planet building. According to the story, Earth as we know it today is a planet sized super computer, built to perform one task: to figure out the meaning of life. A planetary architect named Slartibartfast is entrusted with overseeing the rebuild of Earth after it’s destroyed due to a galactic scale clerical error.

space-3288275_1920.jpg

Planet building.

Possible? Why not? According to prevailing theories, planets mainly form via the process of accretion. Simply put, particulate matter adrift in molecular clouds clumps under the inexorable pull of gravity, forming ever larger clumps that clump to ever larger clumps and so on. Eventually a planet or star is the inevitable result.

A newly formed exoplanet (in the dotted circle) orbits a newly formed, newly discovered star: CS Cha. Image: Space.com

Why couldn’t this be done artificially? Would it be even possible? If it’s just a matter of throwing lumps of crud at other lumps of crud and hoping they stick, then why couldn’t it be?

screenshot_2018-02-25-09-15-04-07372071793.png

Scenario:

It’s the future. Humanity lives and works in space. The asteroid belt is the new frontier or wild west. Chunks of formerly useless rock are now homesteads or villages. Distances are not overly tyrannical. An asteroid is typically only a few light seconds from another. However, asteroids can be moved. Bigger asteroids like Ceres, Vesta or Eros would comprise the main hubs of commerce and trade in this new world.

8319c21e-27f2-459c-b146-f61ab5ef829d

A new frontier… Image: Maciej Rebisz

Smaller settlements such as these “homesteads” could make life easier for themselves in terms of travel times (and therefore fuel costs) to larger, more important settlements by moving closer. In the frictionless, zero gravity environment that is space this wouldn’t be too technically difficult.

Scenario:

Time has moved on. The asteroid belt is a thriving collective of trade networks and conglomerates of smaller settlements. Smaller asteroids now cluster around larger ones like space junk in low earth orbit. Economically, this proximity is making things easier for everyone, and lots of people are getting rich.

Just imagine though if humans disappeared. The zombie apocalypse hit outer space and spread to all corners of the solar system.

(That’s the fun explanation)

Every living human is gone, and the asteroid belt is now a vast ghost band, forming a wreath around the sun, somewhere between Mars and Jupiter. There are all these swarms of asteroids now adrift, all artificially brought closer together by generations of enterprising human beings No course corrections keep them from colliding and so many of them are doing just that. Orbits decay, and tiny chondrite specks plough slowly into larger planetesimals.

See where I’m going with this? Over time, natural accretion would naturally lead to planets forming, or at least a large moon sized object. In millions of years the solar system could have a tenth planet (let’s just sneak Pluto back into the club. Don’t tell anyone!)

Planet Building! Essentially a garbage planet could form from the artificially placed asteroids and other objects now in very close proximity and drawn by the slow but inescapable pull of gravity.

I think it’s an exciting idea: a real megastructure! The ultimate megastructure!

What next?

This post was inspired by a chance statement in a video discussing space colonies on Isaac Arthur’s Science and Futurism youtube channel. Check it out. Isaac has a huge catalogue of lengthy discussions on some really interesting concepts. Here is a link to the relevant video if you’re interested:

Last but not least, here are links to the social media for Maciej Rebisz, the talented artist behind some fantastic space artwork, including the asteroid colony about halfway down the post.

facebook – https://www.facebook.com/maciej.rebisz

twitter – https://twitter.com/voyager212 – general updates

artstation – https://www.artstation.com/mac – art

society6 – https://society6.com/macrebisz – prints

Join me on my facebook group:

https://www.facebook.com/groups/AstroB/

And on YouTube. I’m not quite up to the standard of the venerable Mr Arthur (yet), but I’m working on it. Help me on this journey and subscribe!

http://www.youtube.com/c/BensLab

Advertisements

Exploring Titan: a Channel Update

astrobiology, scicomm, Science fun, solar system, Uncategorized

My tiny little channel lives! I’m almost at 200 subscribers.

UPDATE: 3rd APRIL 2018

200 Subscribers!

Back to the post.

That is peanuts, but it tells me this channel is definitely trending on an upward trajectory. My most recent video “A Brief History of Astrobiology” is doing well (hint, check it out!)

Watch it for an irreverant look at astrobiology over the ages.

My next one will take a closer look at Titan through the imaginary eyes of its discoverer; Christiaan Huygens, the Dutch astronomer who spied this mysterious moon in 1655. I plan on taking Huygens there for a grand tour. He may even meet his namesake!

huygens_astronaut

What would a 17th century stargazer think upon seeing his high tech namesake, at rest on a frozen plain on Titan?

The tale of Huygens incredible discovery, as well as his amazing mind is worth a single video, and so that’s exactly what this new one is, the story of the exploration of Titan, from 1655 up until some imaginary mission sometime in the late 2020s, when a drone flies through the thick soupy atmosphere of this exotic moon. Maybe (just maybe) a submarine will explore the methane seas that dot the moons northern expanses. I personally can’t wait for both to happen.

Titan boasts liquid hydrocarbon lakes at its north pole

This would be quite a view.

Here are a few screen shots from the upcoming video:

titan drone flight.00_04_24_12.Still005

A drones eye view of titan, seen through a veil of organic haze and interference.

titan drone flight.00_02_49_16.Still004

The drone takes wing, dropped into the atmosphere of Titan. One of the mysterious methane seas can be just discerned through the haze coating the landscape.

titan drone flight.00_05_00_11.Still006

A night time flight over a methane lake. Beneath the frigid surface a small submarine drone looks for signs of methane based aquatic life.

I’m super excited about this one, and I am sure it’s going to be a lot of fun. Stay tuned!

Ben.

Astro-biological! A podcast, A group and A whole lotta love!

astrobiology, astronomy, scicomm, science fiction, Science fun, Uncategorized

 

Hello hello!

I’ve been absent for a couple of weeks, working on a new Facebook group devoted to Astrobiology. So far it’s been fun, and people are responding to it. It’s not massive but there’s definitely a level of engagement which I’m enjoying. Hopefully  others are enjoying it too!

Hint: here is a link to the group:

https://www.facebook.com/groups/AstroB/

I honestly am trying to push my channel but it’s stubbornly sitting somewhere in struggle town. While it’s running up the curb though I’m working on stuff.

A poll on my Facebook group indicated that people would be interested in a video about the denizens of Jupiter. What’s that you say? There’s life on Jupiter?

Well, as far as we know there isn’t, but I’m allowed to dream right? What form could such life take?

The idea has been around for some time. I am working on it right now. First things first though, TRAPPIST-1 deserves some love. Next up on the channel I’ll be exploring the TRAPPIST-1 system.

Extremely Extreme Places in the Solar System

astronomy, scicomm, Science fun, solar system

Hi all. This post is essentially the script for a YouTube episode I have coming up on my Ben’s Lab channel. Like the “Holiday on Venus” episode, this one also is meant to depict a TV or radio presenter, outlining a vacation package across the solar system. Zip on past this video if you like, but it provides a bit of continuity for the script.

G’day, lunatics!

“Do you love risking life and limb? Do you think extreme sports is the perfect way to relax? Well then strap yourselves in! Did you love your trip to Venus! Venus is the testing ground for the Apocalypse! Not for the faint hearted!

If you thought Venus was hardcore, and you’re thirsty for more, Time-X has the ultimate vacation package for you! A grand tour of the craziest places in the Solar System! Let’s go!!!!

Mars! Been there, done that, I know, but have you seen a REAL Grand Canyon! Valles Marineris: the longest Canyon in the solar system! Not only the longest, but the deepest!

Those guys in Norway back in the old days… thought they were pretty cool jumping off cliffs, here, swooping down gracefully in their seagull suits! How do you think they’d like to jump into this bad boy! At 2485 miles long, there’s plenty of parking! That’s the distance from San Francisco to Washington. Or, just a bit more than the distance from Sydney to Perth! Holy Frehole! Not only is this canyon long, stretching a quarter of the way around Mars, it’s deep: 7 km deep in places. Hooley Dooley! Cliff jumpers will go insane for this place!

Should we tell them there’s almost no atmosphere on Mars, and they’ll drop like stones?…..Nah!

Still on Mars!

Enjoy a sunrise atop Olympus Mons. Sounds lovely! At an altitude of 21.9 kilometres! That’s pretty tall! How tall is Mount Everest in comparison? Do we even care? Look, look at the little poopoo! Nawwww!!! Olympus Mons is an extremely ancient shield volcano, which has long since become extinct. Climbing its slope, you’d actually be virtually standing in outer space once reaching the peak! What’s not to like about that?

Moving on… ahem!

Next stop, Vesta, a lovely little chunk of prime real estate in the Asteroid belt. Boasting lots of peace and quiet and some really epic views, Vesta has the tallest mountain in the Solar System: Rheasilvia.

A computer generated elevation map of Rheasilvia crater, with its 20km+ peak at its centre. Image: NASA/JPL.

And from above. Red areas correspond to maximum elevation. Image: NASA/JPL.

Plopped right in the middle of a gigantic crater that takes up 90 percent of the diameter of Vesta, this monster was formed by a meaty impact with something really big and mean around 1 billion years ago. Sorry Olympus Mons, Rheasilvia is just a little bit higher than you, at 22 km.

Let’s head further out! Where are we now?

 Io, orbiting Jupiter, is the most geologically active object in the solar system! Did someone say geology? That doesn’t sound very extreme, you say. What does that mean for the extreme sports nut? Well, Io has 400 active volcanoes! 400! Ride your mountain bike down one of those- there’s no shortage of them! Just ride really fast! This place is a little bit too extreme! I’m not hanging around for that!

We haven’t forgotten water sports! Europa is the place to go for extreme deep sea diving! Back on earth the deepest point in the ocean is the Marianas Trench in the Pacific Ocean, which gets to 12 km below sea level. You could hide majestic Mount Everest inside it. Poor Everest, a little bit inadequate today!

Europa, smallest of the Galillean moons, is a real contender for the possibility of life. Image: NASA/JPL.

Europa orbits Jupiter, and looks pretty serene, but that pretty icy shell hides an ocean averaging 62 km deep! I’d like to explore that myself! Just be mindful though, extreme sportsters; Europa may have it’s own life. No littering and no feeding the natives!

That’s some pretty serious water! On to our next stop: Neptune and Uranus!

If extreme weather is your thing, then line up! Go hang-gliding in these winds! On Uranus, winds in the upper atmosphere blow along at over 900 kph!

Stop the world, I wanna get off!

But wait, there’s more!

On Neptune, similar winds scream along at a brain splattering 2100 kph! Just think about it. Whiplash from hell, anyone?

If you still can’t get jumping off rocks out of your system, then you will LOVE Miranda, one of the moons of Uranus. What’s so great about Miranda?

Only the TALLEST CLIFFS IN THE ENTIRE SOLAR SYSTEM!!

Verona Rupes, right of centre, caught in a single grainy image during the Voyager 2 flyby in 1986.

For some colon twisting thrills, these cliffs fit the bill. At 20 km deep, it’ll be a real high jump! Thing is though, we offer this jump to newbies. Why? Because with Miranda’s tiny gravity, it’ll take 12 minutes to fall to the bottom! You’ll hit pretty hard, at about 200 kph, but a tonne of bubble wrap will get around that! We do give a Seniors discount for this jump.

Well those places are nasty, no doubt, But never let it be said that we at Time-X are not discerning purveyors of the ultimate in bowel clenching excitement!

Let’s leave the Solar system altogether! Hurry up! It’s 63 light years away!

What is?

The perfect way to say “I love you” to the raving psychopath in your life!

Exoplanet HD189733B (Catchy name, I know!)

This place eats the others for breakfast. Uranus and Neptune are super windy, but they’re just farting compared to this place. Winds reach speeds of 5400 miles per hour, or 8690 kph!! Oh my gosh! AND it rains glass!! Sideways!! If you’re still keen to visit, put your affairs in order and say goodbye to your loved ones, because that’s what extreme sports are all about!!

Do you wanna live forever?

Places on this trip are going fast! Mind you, we have a slightly high turnover, so you don’t really have to wait too long for a seat. Call now.

If you love bone crushing science and mind splattering knowledge, subscribe to Time-X , I mean Ben’s Lab! Giving you the Universe in PLAIN HUMAN!”

 

What do you think? Suggestions and comments below! Until then,

 

Ben.

 

References and Further Reading:

https://www.nasa.gov/image-feature/rains-of-terror-on-exoplanet-hd-189733b

https://www.space.com/21157-uranus-neptune-winds-revealed.html

https://en.wikipedia.org/wiki/Valles_Marineris

https://apod.nasa.gov/apod/ap110404.html

https://solarsystem.nasa.gov/planets/io

https://www.nasa.gov/multimedia/imagegallery/image_feature_956.html

https://www.space.com/27334-uranus-frankenstein-moon-miranda.html

Unthinking Coordination in “Simple” Lifeforms

emergence, nature, scicomm, Science fun, Uncategorized

It’s another picture perfect day here in Adelaide,  South Australia. Despite the fact that Autumn has been with us a few weeks now I’m getting uncomfortably hot. I’m lying on my stomach on a small marina, my face hanging over the edge and inches from the water.

As is the (annoying) habit of our cat I’ve simply dropped down and parked myself right in the walkway. Why?

Jellyfish. Lots of them.

Getting out and looking for little beasties to photograph is a passion of mine. If I’ve managed to randomly bump into some caterpillar or spider I’ve never seen before,  then I pretty much have to clear my diary. I am not a professional photographer by any stretch, but it’s getting out there and seeing these things that’s important. Whilst walking along the wharves in Port Adelaide the sight of thousands upon thousands of jellyfish in the water has me reaching for my cameras, which are always in my car.

This swarm seems extremely out of place. I’ve already done a live stream on Periscope showing the good folks of Internet land this odd phenomenon, and now it’s time to really try and do it some justice.

A Jelly Family Tree

First off, these graceful creatures are Moon Jellies. They are extremely common in Australian waters. I have observed them now in the Port River in St Vincent’s Gulf, South Australia and in Darling Harbour, Sydney, New South Wales.  Moon jellies are a favourite food for many turtle species. Being easy to both eat and catch I could understand why. I was actually asked this very question during  my live stream.  One thing that heartens me during these live streams (and that I notice while watching others) is that people really like animals. In fact, wildlife seems to bring people together in a very positive way.

There’s some kind of take home message in this, don’t you think?

Moon Jelly is the common name for Aurelia aurita,  a species found globally. Jellyfish, along with sea pens, corals, anemones and hydra belong to the animal phylum Cnidaria. Approximately 10000 animal species belong in this group, and all are exclusively aquatic. Cnidaria are an extremely ancient group, with jellyfish fossils up to 500 million years old being discovered. Fossils believed to represent the Cnidarian crown group predate the Cambrian by around 200 million years. Cnidarians represent the oldest multi-organ animals known.

This fossilised jellyfish, found in Cambrian strata in Utah, is diagnostic of modern jellyfish spp. Image: PLOSone. 

The moon jellies, like all scyphozoans;  or true jellyfish, posess cnidocytes. These are specialised barb like cells which on coming into contact with prey (or anything for that matter) penetrate and inject venom into the recipient.

Micrograph of cnidocytes. Image: microscopy-uk.org.uk

These particular jellies are almost harmless to humans. In fact, it’s said that the only way to feel a sting from a moon jelly is to kiss one.

Not enticing.

Australia is however home to several species of jellyfish which are far more dangerous. We do posess our share of dangerous animals. Some of the most lethal venom on Earth can be found in Australian waters. From the tiny Irukandji jellyfish;

Big things come in small packages. The Irukandji jellyfish delivers one of the most lethal venoms on the planet.

To the Box jellyfish:

Just when you thought it was safe….cue menacing music..

The moon jellies gathered here in the Port River are weak swimmers at best and so are often found collected in estuaries and inlets in this way, caught by the tide. Observing these jellies showed them seemingly moving as one: the group seemed to surge in one direction, oscillating back and forth in a manner reminiscent of group behaviours: much as flocks of birds appear to move about as one. Empirical observation would seem to bolster this. The bell structure of most jellies seemed to point in the direction movement.

This is interesting. Jellyfish, along with other cnidarians, appear to have no (or at least very rudimentary) brains. They clearly have nothing we would recognise as a brain. Instead, their bodies are essentially a loosely interwoven collection of simple nerve networks, reacting and interacting with each other for the purposes of responding to stimuli.

This decentralisation of “administrative duties”, or biological anarchy is seen in some rather more advanced creatures. Octopuses are one example. It is now well known that octopuses are extremely intelligent, but these amazing animals are now thought to sit somewhere outside the traditional brain/body divide we have accepted as a basic paradigm of our own physiology.  Not only do octopuses have a brain, but their tentacles operate independently, acting with their own intelligence. Essentially the entire body of an octopus is it’s brain. Is this a feature of marine organisms and the result of marine existence?

While jellyfish could hardly be called intelligent, are we not giving them enough credit? Does living in an environment as featureless and homogenous as the ocean necessitate a particular brand of spatial intelligence and information processing?

Imagine a line representing a scale. This scale is that of intelligence: in particular the gradation from true brainlessness and pure instinct displayed by, say, bacteria to “higher” intelligence in which all memory, learning and response is coordinated by a complex central nervous system ( a brain. Think “human”).

On this line an octopus seems to sit somewhere beyond halfway. Able to perform complex tasks, and armed with a unique “whole body” intelligence the octopus is gaining a whole new respect.

The jellyfish appears to act wholly on pure instinct and autonomic response. I observe a swarm blindly clustering in a protected estuary and wonder. Decentralised nervous systems enable a different flavour of response to external stimuli. It speaks of a wholly different pathway by which intelligence could rise in the ocean. Terrestrial and marine environments could not be any more antithesis to each other. Land changes much more and over shorter periods of time than the sea. The land is a much harsher place in many ways. Organisms living on land have been forced over evolutionary time to undergo many more changes in order to survive: hard eggs, legs, and a much greater reliance on eyesight to name a few. Life in the ocean is vastly more stable. Does the existence of organisms such as horseshoe crabs, jellyfish, sponges and sharks, which have remained virtually unchanged for hundreds of millions of years give testament to this stability?

Where could a creature such as the jellyfish go, given time? The octopus, a simple mollusc, is an impressive example of a non human and quite alien intelligence. Do other forms of awareness and behaviour (that shown by jellyfish) constitute some new paradigm we haven’t recognised yet, and from which intelligence may someday emerge?