Tag Archives: scicomm

The Last Ecosystem

Fragments of ancient life, spotted by explorers in a new system..

I’ve been working on some more astrobiology art. It’s taken on a life of its own, and I have to say, I’m paying more attention to these images than my YouTube channel!

I’ve been enamoured lately of dead or dying worlds. A recent video on my channel talked about the amazing possibility of limestone fragments orbiting the white dwarf star SDSSJ1043+0855. Ever since reading of this it’s captured my imagination. The notion that life has existed long ago, possibly before life began on earth bears thinking about.

Limestone is a mineral produced primarily by organisms which produce shells, using a matrix that incorporates calcium carbonate. In the early days of multicellularity, as the predator-prey paradigm took hold of Darwinian evolution, an ancestor of today’s molluscs discovered how to make use of an upsurge in calcium levels in the oceans. It used it to produce a protective suit of armour. This trick was so successful that molluscs became incredibly abundant. So abundant, in fact, that their remains ended up as vast deposits of limestone.

To the present day.

Using spectroscopy, the three elements that comprise calcium carbonate: carbon, oxygen and calcium have been detected in the upper atmosphere of this particular white dwarf. By themselves they aren’t a smoking gun. It’s also fair to point out that limestone can form abiotically. Limestone deposits in subterranean caves are one example. However, the vast majority of limestone on earth is biologically produced.

The “limestone” orbiting this star is believed to be embedded in the fragments of a large rocky object. We know nothing about this world, only that it probably existed and (possibly) limestone comprised part of it. Is it a fossil, spotted across the light years by modern humans? How long ago did this world harbour life? White dwarf stars (which aren’t technically stars! Find out why here) have been discovered which are nearly as old as the universe.

Earth is 4.6 billion years old. What of the world currently being torn up by the immense gravity of this white dwarf?

Dead worlds could be scattered across the galaxy.

It would be interesting to look forward and see how our own world eventually will die. For now, this white dwarf star and it’s companions are a way to look ahead at what may befall us. It’s believed that eventually the earth will become incapable of supporting life, as the sun begins to undergo senescence billions of years from now. What iterations will the terrestrial biosphere take over such a vast stretch of time? Will life start over? Are these “fossil” fragments within this unnamed rocky world pieces of its last ecosystems?

What will the last ecosystem on earth be?

Advertisements

Keeping a Lid on Life?

A comment on a facebook post I put up a few days ago got me thinking about habitability. Moreover, I got to thinking about the parameters of habitability.

We think that life here on earth is fragile, holding on to a thin silicate crust within a fairly narrow range of temperatures and conditions. For the most part it is. Life needs a fairly stable environment in order to keep on keeping on. However, there are plenty of examples of oddballs: extremophiles, that seem to do quite well in some pretty horrible places. The recent discovery of Antarctic microbes that derive energy from air itself expands the catalogue of organisms that could have analogues on other worlds.

Now, extremophiles do well in extreme environments. No brainer there, and there is no shortage of extreme environments in our solar system alone.

Venus is an example, and a good one. Analogous to Earth in size, density, gravity and composition, it differs markedly in others. No magnetic field, no water (at 0.002% of the atmosphere not worth mentioning), surface temperatures that melt lead, and atmospheric pressure ninety two times what we’re used to here. It’s horrible.

Why?

No plate tectonics. On earth we slowly sail about the globe on slabs of continental crust, which happen to be more buoyant than the thicker, denser oceanic crust. Driven by convection of magma in the mantle, crust is slowly pushed hither and thither by tectonic processes such as seafloor spreading.

To understand what this is, imagine a pot of something thick like soup or porridge on a stove top. As the contents of the pot heat up they begin to stir. Have you ever noticed when this begins to happen that as the surface begins bubbling the top layer is forced aside as new material wells up from below? This is seafloor spreading in a nutshell. Magma from within the earth wells up, heated by a radioactive core, and pushes the seafloor aside as it breaks through, forming new crust. The continental plates, perched atop this moving crust, slowly journey across the planet.

Why is this so important to life on Earth? Because our planets interior is so hot, plate tectonics (along with volcanism) is the primary means by which excess heat is released over time. If this didn’t happen, well, you wouldn’t be here reading this and there would be two Venuses in our solar system instead of one.

Venus, or any one of billions of hellish worlds in the Galaxy? Studying worlds like this gives us insights into life here on earth, because it shows just how unlivable other places can be.

For reasons unknown, Venus shut down. It’s core stopped spinning, it’s magnetic field dwindled to nothing and radiation from the sun began a process of stripping the planet of water. Water is a true miracle ingredient. Not only is it a solvent for biological processes, it’s also a lubricant for plate tectonics. Venus seized up and overheated: exactly like a car without oil will do.

A stagnant lid world is one which has no plate tectonics. Climate is seriously affected by such a situation. With no means of escape, heat builds up within, and eventually it becomes an exo-Venus: scorching hot.

Researchers looking at the issue of habitability on exoplanets have looked at the implications of a stagnant lid regime for the possibility of life. Whilst it would obviously be different to life on earth, other factors can lend habitability to a planet.

These other possibilities are exciting indeed. I’ve been exploring astrobiology through images, producing a bunch of pictures. They will be appearing over the next few posts, so I hope you enjoy them. They’re doing well on Instagram!

Thank you for reading the ramblings of a space nerd. The universe is just too intetesting to ignore.

Talk later!

P.S.

Check out my channel!

All images: ©Benjamin Roberts

Sailed the Ocean Blue

It’s been estimated that a good percentage of planets beyond our solar system may be water worlds.

We here on mother Earth like to think of our blue green marble as a water world. Indeed it is watery, and water is pretty much the reason anything lives here at all. That’s why astrobiologists naturally seek signs of water on exoplanets. “Follow the Water” is a central tenet in the search for extraterrestrial life.

But compared to some worlds, earth really isn’t that waterlogged at all. It’s 0.002 percent water by mass. Only a tiny fraction of that water is available to terrestrial life. That water which isn’t directly involved in biological processes is linked to them, linking life to the planet via seasons and climate.

Some exoplanets are believed to be up to fifty percent water! These are true ocean worlds. To date, up to thirty five percent of exoplanets larger than may be covered by vast layers of water that may or may not harbour life. The jury is well out on that, but the idea is intriguing (and tempting) as the traditional definition of habitable zones is being stretched and reinterpreted.

A water world with a thick atmosphere of steam.

For now, we have only our imaginations with which to explore these worlds…

An aerial view of remote coastline on a hypothetical watery exoplanet.

A new video!

Translations

More images.

I’ve been thinking some of these may look good as posters. Thoughts anyone? They provide another way to reach people, as I myself continue to explore and learn about a truly incredible topic.

I like the look and think my channel will finally benefit from a coherent look and vibe. The retro font works for me, and the surreal, fantastic feel of the pictures is my jam.

Channel News

A new video exploring the possibility of directly imaging exoplanets is coming very soon!

Here is a snippet; sans sound or effects just yet!

More coming.

Images of Astrobiology

The universe is turning out to be a more interesting place with each passing day for me. It’s not all about reading research articles and trawling the internet for interesting news in the vast field that is astrobiology.

I’ve been working on images related to various themes in astrobiology. This field really is a playground for the imagination, and it has something for everyone….

Recent news of a relic subsurface biosphere just beneath the surface of Mars…

Our ones and zeroes formed in starlight?

Something really special here: possible traces of limestones found in the fragments of objects orbiting a nearby white dwarf star…

 

Differing definitions of the Habitable Zone further push the limits of life in the universe..

Svante Arhenius, a swedish chemist and early pioneer of the theory of panspermia..

Ruminations on the code (codes?) that make life possible. How many languages does life have in the Universe?

Does the chemical rich, pitch black seabed of Europa host life? Does that of Enceladus?

 

The first image I created. I hope you’ve like these. There will be more! By the way, the background for this image comes from an online simulator called Goldilocks, by Jan Willem Tulp. His work can be found here. It’s really cool.

What’s going on with YouTube and small creators? 

Ok. 

I embarked on my own YouTube journey some two years ago. To say it’s been a frustrating and agonising ride could be rightly called an understatement. Video production has presented me with a massively steep learning curve. I know full well I haven’t come anywhere near perfecting my craft, but it’s one of those labour of love things. Which is one of the reasons I still do it. 

Initially I started the channel with an interest in talking about general science topics. As time went on I realised that in all realism this wasn’t working for me. The subscriber count is still tiny, and the lifetime views number in the very low thousands. This is all part and parcel of finding my feet. Again, this is all part of that learning curve. Since “rebranding” the channel a few months ago I feel I’ve gained a new perspective on the whole affair. 

In that time the monolithic behemoth that is YouTube (Google) has made it fairly clear that small channels aren’t worth their time. A sense of malaise has set in among small channels and I have to admit it’s hard to fight off sometimes. 

Zero prospects for monetisation at this point. Well technically not zero, but a statistically insignificant chance of a small channel getting through the ever shifting goal posts YouTube places before us. 

I don’t begrudge larger channels their success. It is hard work, I’ve learnt that much. They obviously have done the hard yards. We little guys generally know this is the path we must take too. But sometimes an uphill battle becomes something else, and you need to find another reason to continue. 

My channel is AstroBiological. I look at astrobiology. It’s a fun topic but a niche one. I do it right now because I like it. Other channels like mine deserve notice and so I implore the reader to peruse this catalogue of fine educational content, created by WeCreateEdu; a Slack.com group dedicated to giving educational YouTubers the help and resources they need to find their feet. I’m nowhere near there yet, but others are. There are plenty of good people in this list, and all some of them want is for you to watch and enjoy what they have really worked hard to create. It’s a labour of love for many, so there’s an extra sting when they go unnoticed. 

If you’re an educational YouTuber yourself, let’s all work together and help each other toward whatever dream motivates us.

On Twitter:

Take a look at WeCreateEdu (@WeCreateEdu): https://twitter.com/WeCreateEdu?s=09
On Facebook:

https://m.facebook.com/WeCreateEdu
WeCreateEdu is a supportive community and I’ve learnt and lot. Maybe you can too! 

Making videos on your phone. 

A few months ago I was watching a YouTube video which steered me towards the topic of this post. I am a (very small time) youtuber myself, and spend a lot of time looking for ways to tweak my content and make it more polished. The YouTube video mentioned above was made using screen capture software and the simulation package Universe Sandbox. The video featured all kinds of hypothetical scenarios being imagined and allowed to play out within the simulation. For example, the questions were asked: what if Saturn was moved closer to the sun? What if Earth passed through its rings on this inward journey? What if Saturn and Jupiter made a close approach to each other?

It was fascinating to watch. Simulating actual physics and real world parameters you could see what actually could happen if such scenarios actually took place. It got me thinking about my own video content, and about these simulation software packages. I of course had to get my hands on some!

Currently I am producing videos using both my laptop and my smartphone. In this post I will focus on the capabilities of a smartphone to produce videos about outer space.

Animations for this video were produced entirely on my smart phone, using several apps available on Google Play. My phone is an Android device, but I’m assuming there are equivalents over at the enemy camp.

First off, these apps are great educational tools. Perhaps where they are the most effective is getting people to explore from the palm of their hand. In this device obsessed era this is a big deal and also a drawcard for the digit generation. This video explores some mobile apps I’ve been using for my YouTube channel. It’s really amazing what you can do with amazing most nothing! I’ll also include a video about Uranus. All of the planetary animations came from mobile apps. 


The Uranus video:

Here is another earlier video briefly introducing the moons of Mars…


And in this one I discuss Enceladus and some promising signs of habitability there:


These videos were extremely easy to make and perhaps the point of this post is that anyone can communicate something they care about. Enjoy!