Life Around a Failed Star..

astrobiology, astronomy, sciart, scicomm

While NASA’s Parker Probe delves into the mysteries of our own sun, other objects known as brown dwarfs taunt us, adrift in a limbo between star and gas giant.

Could Life Survive Around a Failed Star?

November 2, 2018

To date, a little over 3700 exoplanets have been discovered. Many of these owe their discovery to the Kepler Space Telescope, which as of writing this post has been retired by its masters. Thank you Kepler.

Not all of these planets are habitable. Far from it in fact. Only about 55 “Earthlike” planets have been earmarked for a closer examination. With an estimated 2 trillion planets in the Milky Way galaxy alone, this tiny group of maybes doesn’t seem to hold out much hope for the astrobiology crowd. In order to simplify things a little, researchers generally look for life as we understand it, in environments we can understand. A world with a mild climate, liquid water, with life employing carbon is the rule of thumb.

It’s a big universe though, and life not as we know it could be the norm. What kinds of lifeforms could exist in environments in which life on earth could never arise?

In the atmospheres of gas giants? On frozen worlds? What about rogue planets: worlds not tethered to a solar system. These wanderers could be common in this galaxy. What about brown dwarfs?

What is a brown dwarf ? Often they are referred to as brown dwarf stars, and this gives some clue as to their nature. Literally, a brown dwarf is a failed star. That is to say, a brown dwarf is a former protostar which has failed to reach the critical mass required for star hood. Far from being underachievers though, brown dwarfs are interesting to exoplanet researchers. These mysterious objects exhibit properties of stars and planets.

A rogue planet is a wandering planet: homeless so to speak. How is this important for exoplanet research? In my most recent video I talked a little about some of the difficulties faced by astronomers when attempting to directly image exoplanets.

The images don’t look like much. One problem with direct imaging is that the light from host stars get in the way. Brown dwarfs circumvent this by often being standalone objects, enabling researchers to examine these “pseudoplanets” (pseudostars?) and learn more about exoplanet characteristics and behaviour.

What about their starlike features?

A star is an object which uses fusion of elements such as hydrogen or helium to produce heat and light. Other stars fuse heavier elements, but we’ll just avoid that fork in the road today 😉

This is a red dwarf star at work. The heat and light produced by this little monster could support life in other solar systems. TRAPPIST-1 is a well known example.

This is an artists impression of a typical brown dwarf. Generally much more massive than Jupiter, our own big guy, this object may undergo limited fusion of heavier elements such as deuterium.

Of even more interest to astrobiologists: brown dwarfs could be capable of supporting life! Not in themselves as such, but several brown dwarfs are known to possess their own planetary systems.

Let’s add a planet to this image. A planet in orbit around a brown dwarf may be heated by tidal stresses. Worlds such as Europa in our solar system lie far beyond the habitable zone surrounding our sun, yet may theoretically harbour life in a subsurface ocean heated by tidal forces. Hypothetical worlds orbiting brown dwarfs could experience something similar.

Of course, as I have pointed out to me all the time, life is fairly fussy, and requires a fairly stringent catalogue of conditions and contingencies. We can still dream right? After all, what’s the point of astrobiology if not to colour outside the lines a little?

Or a lot?

Find me on YouTube and while you’re at it, some other posts on this blog require your attention!

For some bizarre reason, I can’t caption images right now. All images produced by Ben Roberts, with the exception of image two, which was produced by the European Southern Observatory Very Large Telescope.


Some New Directions


Hey all. I’m finally excited about something for the first time in awhile. I recently received a tablet from my LOVELY wife. It’s a Wacom Intuos Pro. I have been wanting an art tablet for years now. I had one once, but it was a slow, crappy little thing on slow crappy little computers. This one is a bit more high end.


The best present ever. Creativity.

This thing has opened up creaking doors in my brain, which I thought had fused shut. It’s even been helping me in a therapeutic sense. I have had some pretty dark years recently, and they have taken their toll. This tablet has enabled my mind to properly elucidate and crystallise several things which have been weighing me down…


I’ve always loved cartooning, and this guy, whilst new, brought back some memories…

Sometimes art can give a form to nameless and shapeless fears. It can help you contain and control them, by capturing them on paper (so to speak)…

lonely boy

Innocence lost…


A nameless monster..

This tablet is already hard at work, helping me with my next video, which takes a look at how a quaint little engine from the nineteenth century could help us take a real look at the surface of Venus!

Lots of things sloshing around in my head! The video is shaping up to be a lot of fun! I hope you can check it out when it’s up! I will start putting up artwork as it comes. Here’s the thumbnail for the video..What do you think?venus video thumbnail

Find me on my facebook group, where astrobiology is the name of the game!

fb cover fixed-dimensions351813414..jpg

Exploring Titan: a Channel Update

astrobiology, scicomm, Science fun, solar system, Uncategorized

My tiny little channel lives! I’m almost at 200 subscribers.

UPDATE: 3rd APRIL 2018

200 Subscribers!

Back to the post.

That is peanuts, but it tells me this channel is definitely trending on an upward trajectory. My most recent video “A Brief History of Astrobiology” is doing well (hint, check it out!)

Watch it for an irreverant look at astrobiology over the ages.

My next one will take a closer look at Titan through the imaginary eyes of its discoverer; Christiaan Huygens, the Dutch astronomer who spied this mysterious moon in 1655. I plan on taking Huygens there for a grand tour. He may even meet his namesake!


What would a 17th century stargazer think upon seeing his high tech namesake, at rest on a frozen plain on Titan?

The tale of Huygens incredible discovery, as well as his amazing mind is worth a single video, and so that’s exactly what this new one is, the story of the exploration of Titan, from 1655 up until some imaginary mission sometime in the late 2020s, when a drone flies through the thick soupy atmosphere of this exotic moon. Maybe (just maybe) a submarine will explore the methane seas that dot the moons northern expanses. I personally can’t wait for both to happen.

Titan boasts liquid hydrocarbon lakes at its north pole

This would be quite a view.

Here are a few screen shots from the upcoming video:

titan drone flight.00_04_24_12.Still005

A drones eye view of titan, seen through a veil of organic haze and interference.

titan drone flight.00_02_49_16.Still004

The drone takes wing, dropped into the atmosphere of Titan. One of the mysterious methane seas can be just discerned through the haze coating the landscape.

titan drone flight.00_05_00_11.Still006

A night time flight over a methane lake. Beneath the frigid surface a small submarine drone looks for signs of methane based aquatic life.

I’m super excited about this one, and I am sure it’s going to be a lot of fun. Stay tuned!


What’s going on with YouTube and small creators? 



I embarked on my own YouTube journey some two years ago. To say it’s been a frustrating and agonising ride could be rightly called an understatement. Video production has presented me with a massively steep learning curve. I know full well I haven’t come anywhere near perfecting my craft, but it’s one of those labour of love things. Which is one of the reasons I still do it. 

Initially I started the channel with an interest in talking about general science topics. As time went on I realised that in all realism this wasn’t working for me. The subscriber count is still tiny, and the lifetime views number in the very low thousands. This is all part and parcel of finding my feet. Again, this is all part of that learning curve. Since “rebranding” the channel a few months ago I feel I’ve gained a new perspective on the whole affair. 

In that time the monolithic behemoth that is YouTube (Google) has made it fairly clear that small channels aren’t worth their time. A sense of malaise has set in among small channels and I have to admit it’s hard to fight off sometimes. 

Zero prospects for monetisation at this point. Well technically not zero, but a statistically insignificant chance of a small channel getting through the ever shifting goal posts YouTube places before us. 

I don’t begrudge larger channels their success. It is hard work, I’ve learnt that much. They obviously have done the hard yards. We little guys generally know this is the path we must take too. But sometimes an uphill battle becomes something else, and you need to find another reason to continue. 

My channel is AstroBiological. I look at astrobiology. It’s a fun topic but a niche one. I do it right now because I like it. Other channels like mine deserve notice and so I implore the reader to peruse this catalogue of fine educational content, created by WeCreateEdu; a group dedicated to giving educational YouTubers the help and resources they need to find their feet. I’m nowhere near there yet, but others are. There are plenty of good people in this list, and all some of them want is for you to watch and enjoy what they have really worked hard to create. It’s a labour of love for many, so there’s an extra sting when they go unnoticed. 

If you’re an educational YouTuber yourself, let’s all work together and help each other toward whatever dream motivates us.

On Twitter:

Take a look at WeCreateEdu (@WeCreateEdu):
On Facebook:
WeCreateEdu is a supportive community and I’ve learnt and lot. Maybe you can too! 

Wolf-Rayet: The Day The Bubble Burst


It’s a story that began 20000 years ago, and has been waiting for you. Like something out of a “Star Trek” episode. The vista before you hangs in the black like a portal into the fiery underbelly of all that’s good in the Universe.

WR-124. Like a passage leading into the flaming maw of Hades itself.. Image: ESA/Hubble and NASA

“Star Trek” You remember it now. The Battle of Wolf-359. It was a classic episode, in which a tattered human military force took on a vastly superior foe: the Borg. These creatures were bloodless and implacable. Truly unsettling bad guys.
This monster is just as unsettling. Wolf-Rayet-124 is real. It’s huge. You’ve come a long way to encounter it. A small fleet of drone-sats has been dispatched to get up close and personal with this Wolf-Rayet star, to see how extreme extreme sports can get.

As soon as humans got comfortable in space and started calling all kinds of dark corners and odd rocks home they were up to their usual mischief. As soon as all the laws were decreed and the soapboxes were all put away, humans got back to the serious business of finding new and bizarre ways to enjoy themselves.

To Hell with that.

Space tourism didn’t become big business. It became exponentially big business. Extreme sports fans weren’t interested in scuba diving with great white sharks anymore, or parachuting.
Ha! You recall the stories. The One-G-ers were those quaint old extreme sportsters who couldn’t let go of old mother earth. Most of them were toothless and half nuts decades ago, but they still harped on about climbing Mount Everest or wrestling crocodiles.

You look upon Wolf-124, blazing with a luminosity several million times greater than Earths sun back home. Wolf-124 is huge. How huge? These kinds of stars are rare. Of the millions of stars known to humanity only around 500 Wolf-Rayet stars are known to exist in this galaxy.

Wolf-Rayet stars are thought to be the powerhouses driving many planetary nebula or stellar nurseries. How does this work?

Your little drone sats are tasting the cloud of ionised gas and interstellar gunk that swirls around the star. This cloud is nearly 6 light years across; a dusty miasma flung outwards by the intense solar winds radiating from the star within. From your vantage point out here, looking down into this slow maelstrom you see chunks of the star heading outward. Earth sized pieces of WR-124 soar through the cloud like the volcanic rage of a demon tearing itself apart.

You write that last line down. The tourists will love it.

Sometime around 20000 years ago, when human beings were first discovering Europe WR-124 began tearing itself apart. Scientists never really ascertained why, but it’s made for some great observations over the years. Tourists will love this. You got here first, to set up the first fleet of solar sailing yachts. The winds from the star crack along at 1600 km per second, fast enough to twist the most iron stomachs.

These stars have unusual emission spectra. Many of the space tourists won’t care what this is, but there’s always someone in every group who just has to understand what they’re leaping into. Fair enough. What it means is that like any other star a Wolf-Rayet star burns up fuel. Our star, a relatively youthful star somewhere near middle age, is still burning hydrogen via the process of stellar fusion. As a star ages it’s supply of hydrogen becomes depleted, and it must burn heavier elements in order to survive.Wolf-Rayet stars are often seen to have high levels of quite heavy elements or “metals” such as carbon or nitrogen in their upper atmosphere. This is due to nearly complete depletion of hydrogen fuel so as a result heavier elements are being used up.

What does this have to do with spectra?  Well, as elements transition from higher to lower energy states, ie when they’re being burned up inside a star, photons of particular wavelenghts are given off. It’s possible to tell just by analysing the wavelengths of light radiating from a star (it’s emmision spectra) what’s going on in and immediately around the star. This is why scientists know WR stars are old, and what they’re burning off in place of hydrogen. It’s also the reason they can infer the presence of extreme solar winds. The luminosity and heat given off by a WR star is extreme. At it’s surface a WR star can reach temperatures of between 30000 and 200000 Kelvin; hotter by far than most other stars. Such radiative pressure literally manifests as a “wind”, with the abilty to exert pressure on objects, such as solar sails!

Sailing the Big Empty. Image: Andrzej Mirecki

Most of the drone sats are keeping a safe distance from WR-124. This might just be an imaginary blog post, but you have imaginary operating costs, you know?

So you’ve staked your claim here. Now, all that’s left to do is wait for the money to fly in!

Still, you’re thinking of your next venture. There’s an exoplanet out there somewhere: HD 189733B where it rains glass! Now that sounds like fun…..

While you’re here, join me on the AstroBiological YouTube channel. I’m hard at work sprucing it up. What do you think of this intro sequence?

One last thing! 

Hop onto WeCreateEdu: an online community for educational you tubers. There is a galaxy of stuff to learn and explore here. Very much worth a look:
Small YouTube channels are feeling the squeeze from some draconian new measures by Google which effectively punish small creators and make it almost impossible to gain traction. Some thoughts on the matter from a fellow YouTuber. 

16 Psyche

astrobiology, astronomy, scicomm, solar system

My newest video features the bizarre metal asteroid 16 Psyche. This improbable chunk of iron and nickel may one day be mined, yielding metals worth over 10000 quadrillion dollars! No, that figure doesn’t seem real to me either.

Here is the transcript for said episode. I had some fun experimenting with effects for this episode, and I think it works well!

“G’day metal heads!

Do you think you’re rough and tough?

Do you believe you’re made of metal?


See if you can outmetal THIS monster! A ball of metal mayhem 200 km across! Let’s go check out 16 Psyche!!!

Long long ago, in a molecular cloud not so far away….

The Solar System: Episode 1

It is a time of turmoil in the newly formed solar system. Planets, moons and other heavenly bodies have coalesced from the primordial cloud. As larger bodies fall into orbit around a blazing new sun, smaller worlds are caught up in a system wide spree of destruction known as the Late Heavy Bombardment.

It is a perilous time for a planetesimal or moon, and many smaller planets are destroyed in the cataclysm.

A lone youtuber known as Ben has ventured out into the Big Empty, to visit the long dead core of one such world. Upon reaching it, he sends in a gallant drone to investigate….

Yes Sir! Here we are. Welcome to 16 Psyche. An oddball world really. This place is special for a few reasons.

Discovered in 1852 by the Italian astronomer Annibale de Gasparis, 16 Psyche was named after Psyche, a figure from ancient Greek mythology. The word itself means “Soul”.

16 Psyche is pretty big: a ball of metal over 200 km in diameter! It’s almost entirely nickel and iron to be more precise, although about 10 percent of its surface is strewn with silicate rock much as you’d find here on good old earth.

So this ball of tinfoil from hell comprises nearly one per cent of the mass within the asteroid belt where it lives. It actually lies roughly halfway between Jupiter and Mars, about 3.3 AU from the sun.

What’s an AU?

AU is a very common astronomical term. It means “astronomical unit’. 1 astronomical unit is defined as the distance between Earth and the Sun. This is about 93 million miles or 150 million kilometres. At 3.3 AU this means 16 Psyche lies some  308 million kilometres from the Sun.

Wanna know what’s really special about this metal asteroid?

Two things.

First of all, 16 Psyche is extremely valuable. All of that iron and nickel within has been valued at over 10000 quadrillion dollars!

Obviously that means a lot of folks would love to mine it for all that metal.  A whole bunch of companies have sprung up in the last few years, looking to cash in on asteroids: the next big thing!

Personally, I don’t care about all that. You wanna know what’s really cool about 16 Psyche?

It’s the exposed core of a long dead protoplanet; the remains of a tiny world maybe 500 km in diameter. This tiny planetoid took a beating during the Late Heavy Bombardment, some 4 billion years ago. In fact, this nameless world may have been impacted by other large bodies up to 8 times. This pounding shattered the outer crust, sending scattered fragments out into the newly forming asteroid belt and leaving behind an exposed core. Scientists would love to study 16 Psyche, because it can teach us a lot about planet formation and how planets work- including our own.

Just look at it!  Imagine walking on the core of a planet. 16 Psyche gives us an opportunity to see into our own world in a way. It’s like a time capsule: a snapshot of a newly forming planet, frozen in time for ever.

This is the real value of 16 Psyche, this frozen soul. Let’s take one last look and imagine actually being there….


I hope you’ve enjoyed watching this episode. It was super fun to make, and if you got something out of it, then subscribe to this channel for more. Join the astrobiological Facebook group, find me on Twitter. Links in the description.

AstroBiological: giving you the universe in plain human. See you next time!”

Making videos on your phone. 


A few months ago I was watching a YouTube video which steered me towards the topic of this post. I am a (very small time) youtuber myself, and spend a lot of time looking for ways to tweak my content and make it more polished. The YouTube video mentioned above was made using screen capture software and the simulation package Universe Sandbox. The video featured all kinds of hypothetical scenarios being imagined and allowed to play out within the simulation. For example, the questions were asked: what if Saturn was moved closer to the sun? What if Earth passed through its rings on this inward journey? What if Saturn and Jupiter made a close approach to each other?

It was fascinating to watch. Simulating actual physics and real world parameters you could see what actually could happen if such scenarios actually took place. It got me thinking about my own video content, and about these simulation software packages. I of course had to get my hands on some!

Currently I am producing videos using both my laptop and my smartphone. In this post I will focus on the capabilities of a smartphone to produce videos about outer space.

Animations for this video were produced entirely on my smart phone, using several apps available on Google Play. My phone is an Android device, but I’m assuming there are equivalents over at the enemy camp.

First off, these apps are great educational tools. Perhaps where they are the most effective is getting people to explore from the palm of their hand. In this device obsessed era this is a big deal and also a drawcard for the digit generation. This video explores some mobile apps I’ve been using for my YouTube channel. It’s really amazing what you can do with amazing most nothing! I’ll also include a video about Uranus. All of the planetary animations came from mobile apps. 

The Uranus video:

Here is another earlier video briefly introducing the moons of Mars…

And in this one I discuss Enceladus and some promising signs of habitability there:

These videos were extremely easy to make and perhaps the point of this post is that anyone can communicate something they care about. Enjoy! 

Goldilocks and the Three Planets


Hi all. It’s been a while I’m ashamed to admit. I’ve been working on a new Facebook group to raise the profile of my channel. It’s been fun. Here is the link (hint: join the group!)
Here is my newest video. A basic breakdown of what exactly the Goldilocks (or circumstellar habitable) zone is, and it’s importance to life on Earth. If you like the channel please subscribe!

I’ve also provided the script/transcript for my upcoming episode of “Astro-Biological:”, which introduces us to the concept of the Goldilocks Zone….

G’day! Welcome to Astro-biological:!





Ben what the heck are you talking about? What’s the connection?

 Let’s go check out THE GOLDILOCKS ZONE!!!!


Life, as I like to remind you, is really special. Here on earth, life exists only because certain conditions are met. Today, we’ll consider water. Everything needs it, but it only exists as a liquid at the surface here on Earth. 

So? Big deal right?

Well it is actually!

Check out the sun. Giver of life! Driver of climate! Pumping out some pretty respectable energy. How much?

384.6 yottawatts.

Yotta whatta?

1 yottawatt equals 10 with 26 zeroes after it!

Brutal! And the sun is a pretty average star! Nothing special about it!So there’s plenty of sunlight for everyone!

Could other planets benefit from the sun’s golden goodness the way we do? Let’s take a look at the inner planets. They’re the only ones that really matter in all this…

Let’s see…Mercury, Venus, Earth and Mars. The rocky planets. The so called “Terrestrial Planets”. 

Mercury is 58 million kilometres from the sun. That’s really close. This close proximity has turned Mercury’s surface into an oven, where liquid water couldn’t possibly last.

Let’s visit the next in line: Venus. Venus is similar to Earth in composition, gravity and size. Long ago Venus might have had oceans just like Earth, but again the planets closeness to the sun and other factors saw all that water disappear into space. Venus is now the hottest place in the solar system. Definitely no liquid water there anymore!

Wanna know more about what happened to Earth’s twin? This guy I know made a video! 

Earth! Beautiful Earth. Our home. Every thing’s home actually. Eighty per cent of earth’s surface is covered by liquid water. There’s so much spare water here that our bodies are mostly made up of it! It’s absolutely everywhere, even locked up deep in the earth’s crust! Enough of earth. We’ve all been there.

Next planet out:

Mars. The cool planet. Every one wants to go here. Pity it’s so cold! Liquid water may exist here in tiny amounts, but most of the red planet’s water is locked up as ice or permafrost just below it’s surface. Plenty there for future colonists to use, but nothing readily available for biological processes. Pity. It’s a beautiful planet. Just ask Matt Damon!

So what is the Goldilocks Zone then?

Here’s the inner solar system. Mercury, Venus,  Earth and Mars. Let’s visit a special guest who can explain the Goldilocks Zone for us…

Chef Ben bit. (Watch the video when it’s up!)

Nice work Chef! So, if Earth was a bowl of porridge it would be the one Goldilocks ate: the one that was just right! it’s that simple! Earth is lucky enough to be at the perfect distance from the sun, where water likes to slosh around in liquid form. Things would be a lot different here if that wasn’t the case. 

So that’s it for now! A simple but important piece of information. The Goldilocks Zone!

How am I going so far?

If you thought I was alright, then subscribe for more. If you thought this video was useful to you, then give it a like! Likes help this channel get noticed. That little notifications bell is just the thing if you want to see more. Go on. You know you want to.

Thanks for watching astrobiological. Giving you the universe in plain human. Ciao!

Astro-biological: The living universe 


I have been hard at work rebooting my Bens Lab YouTube channel. This has been prompted by a realisation that a niche topic such as astrobiology is not only insanely interesting, it can keep a niche channel alive, away from the blinding glare of the massively monolithic and sucessful general science channels dominating the platform.

Astrobiology is almost too interesting, and there is plenty of scope for all kinds of interesting viewing. It’ll at least be fun making them. There’s also a huge array of related topics, with some room even for a bit of speculation and fun!

To that end I’ve rebadged the channel a little, and here is the first “proper” video from Ben’s Lab presents: astro-biological: